
A report prepared for:

The Central Otago Lakes Branch of the Royal Forest and Bird
Society

An analysis of Makarora
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Summary

Current monitoring of Mōhua (Mohoua ochrocephala) in Makarora is
effective and meaningful, and likely provides a reasonable representa-
tion of how the population may be tracking. A robust analysis of the
field data is possible via generalised linear mixed-effect modelling that
accommodates zero-inflation.

Analysis of the Makarora Mōhua data indicates that the encounter
rates declined dramatically between the period 2011–2012. This phe-
nomenon appears to be attributable to a widespread rat irruption that
also caused the collapse of the Mōhua population in the Rees-Dart Val-
ley. In the years since, the encounter rates of Mōhua have recovered to
the point that the rates in recent years are returning to the levels seen
in 2011. Indeed, the encounter rates in 2018 and 2020 are statistically
indistinguishable from the levels recorded in 2011.

The modelling used in the analysis suggests that temperature posi-
tively affects the number of Mōhua seen when they are there, and that
even slight wind increases the probability of seeing no Mōhua. Con-
sequently, temperature and wind must continue to be recorded, and
incorporated into modelling of the encounter rates. Given the complex-
ity of the analysis automation would provide a dramatic cost saving in
future, and enable near real-time reporting.

Incorporation of tracking card data from DOC into the analysis has
revealed that the encounter rates of Mōhua in Makarora can be pre-
dicted from the incidence of rats in the preceding 12 month period.
Modelling suggests that once the mean annual incidence of rat tracks
in tracking cards exceeds 11% a decline in Mōhua can be expected.
Given that rat predation on Mōhua is well documented such declines
are almost certainly the result of direct predation. The aerial applica-
tion of 1080 has been a major factor in reducing rat abundance follow-
ing large beech masting events and therefore is enabling the ongoing
recovery of Mōhua in the Makarora area.

While this analysis infers that landscape-scale rat control through
the use of 1080 has likely contributed to the ongoing recovery of the
population, it cannot rule out the possibility that localised predator
trapping may be contributing to that success. Given the strength of
the association between rat and Mōhua abundance the reliability of the
predictive rat model, developed through this analysis, should be more
deeply investigated in coming years owing to its forecasting potential
and ability to guide conservation decision making.

While the Makarora Mōhua population appears to be returning to
levels last seen in 2011, this is likely to be a fraction of their historic
norm, and should not be mistaken as a benchmark for success.
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Purpose

This document reports on an analysis of Mōhua data1 for the Makarora
area over the period 2011–2020. The analysis was requested by the
Central Otago Lakes Branch of the Royal Forest and Bird Society (COL-
BRFBS) due to concerns over the robustness of a previous analysis.

Figure 1: The location of the Mōhua transects in Makarora. Note: there is no
transect ”7”, and for purposes of this analysis transect ”6a” was subsumed into
transect ”6”.

Data analysis

All analyses, graphing, and examination of diagnostics occurred in Pro-
gram R (version 4.0.3) (R Core Team, 2020) with additional functional-
ity provided by the packages ‘AICcmodavg’ (Mazerolle, 2020), ‘Amelia’
(Honaker et al., 2011), ‘car’ (Fox and Weisberg, 2019), ‘DHARMa’ (Har-
tig, 2021), ‘emmeans’ (Lenth, 2021), ‘glmmTMB’ (Brooks et al., 2017),
‘janitor’ (Firke, 2021), ‘lme’ (Bates et al., 2015), ‘lubridate’ (Grolemund
and Wickham, 2011), ‘MuMIn’ (Barton, 2020), ‘readxl’ (Wickham and
Bryan, 2019), ‘stringi’ (Gagolewski, 2020), ‘tidyverse’ (Wickham et al.,
2019), and ‘vcd’ (Meyer et al., 2020). The transects mentioned in this
document can be found in Figure 1).

1the data used in this analysis was acquired by COLBRFBS via an agreement with the
Department of Conservation (DOC), a full description of the field protocols which gave
rise to the data are held by DOC and are recorded in a number of reports including
Tilson (2017)
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Primary analysis

1. Upon detailed checking there were a number of missed values, ty-
pographic errors and illogical values in the parent data set. These
were either corrected directly in the spreadsheet (where the cor-
rect value was obvious and unequivocal), over written only for the
analysis in R where the corrected value was assumed, or imputed
(created) via the ‘Amelia’ package in program R if it were missing.
A more conservative approach would be to remove any rows of
data which contained a mistake or missing value. However, it was
clear that the consequence of the latter would likely have more
impact than the former, consequently imputation was preferred.

2. A parametric modelling approach2 was undertaken as decision
making in wildlife management rests not only in the predictive
power of the algorithm but in understanding the contribution of
different explanatory variables to the overall result. Numeric vari-
ables were checked for multicolinearity3 via the ‘car’ package,
however no issues were identified.

3. As raw encounter data can only ever result in whole numbers, the
starting point for the analysis would be some kind of a Poisson
regression (the Poisson distribution being the type associated with
count data).

4. As the transects are of variable length the encounter rate will be
determined by a function relating to that length. Consequently,
an offset based on length is required4. Note: in 2017 the transect
at location ”6” was lengthened, as a result it was treated as the
same transect albeit with a different length (Figure 1).

5. As the monitoring occurs at transects which are repeatedly re-
monitored the type of model required will be a generalised linear
mixed-effect model (abbreviated to GLMM, formerly known as a
‘repeated measures’ analyses).

6. Consequently, the starting point for the analysis was a GLMM
(using the ‘lme4 ’package) in which the fixed (main) effects were
modified by transect length as an offset, while transect type rep-
resented a random effect (essentially a nuisance variable5), and

2one involving statistical distributions, opposed to a non-parameteric approach e.g.
machine learning

3multicolinearity is a situation where the explanatory variables are revealed to be non-
independent (i.e. they can predict each other)

4intuitively many people will make the mistake of dividing the count by length, to
achieve a rate, however the correct mathematical procedure in Poisson regression is to
use a log transformed offset

5this refers to a variable which we already know will be different, in a situation where
we want to know the overall pattern despite this inherent difference
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the link function6 was consistent with data following a Poisson
distribution.

7. Parametric modelling approaches demand that the underlying as-
sumptions of the models are fulfilled. In practice for a GLMM
this means ensuring that residuals produced by the model are
normally distributed, the data is not over-dispersed (more vari-
able than expected) nor zero-inflated (meaning zero counts are
not more common than expected).

8. Diagnostic testing (via the ‘DHARMa’ package) after the first round
of modelling using a GLMM, revealed that the residuals were not
normally distributed. Further analysis of a rootogram (via the ‘vcd’
package) suggested there was zero-inflation and over-dispersion
(despite not being picked up the ‘DHARMa’ package).

9. Consequently, the analysis was shifted to a different type of GLMM
which is extended to handle situations of zero-inflation (via the
‘glmmTMB’ package). The new GLMMs modelled the data as two
separate processes which relate to the: (1) prediction of counts
(some of which may be zero), and (2) prediction of excess zero
counts. Subsequent diagnostic testing revealed that the issues
relating to the non-normality of residuals had been overcome.

10. A suite of candidate models representing different hypotheses (i.e.
different, yet reasonable combinations of explanatory variables
present in the data, including an intercept only uninformative
model7) were tested in a model selection process using Akaike’s
Information Criterion (with small sample adjustment) to rank the
models in terms of parsimony (sensu Burnham and Anderson
2002). Throughout the analysis the variable ‘Year’ was treated
as a factor to allow independence between years.

Supplementary analysis

The acquisition of tracking card data provided by DOC (Figure 4) cover-
ing the full monitoring period presented an unexpected opportunity to
extend the analysis. Specifically, it allowed the examination of whether
changes in the incidence of rat tracks in tracking card data could be
used to predict the annual changes in Mōhua encounter rates.

1. The investigation commenced by segmenting the DOC data so that
a mean of the tracking card incidence rate was produced for the
interval between each monitoring period.

6used to transform the data back and forth between different mathematical scales
7intercept only models have a formula notation ∼1
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2. Three linear models were then used to establish whether the mean
incidence rate of rats (MIR) correlated with annual changes in
Mōhua encounter rates (i.e. the model coefficients from the top-
rank GLLM model). The three models tested were: (1) MIR having
a linear relationship with the coefficients, (2) MIR having a rela-
tionship described by a second order polynomial with the coeffi-
cients8, and (3) an intercept only model (∼1) which was used as a
baseline for uninformative model performance.

3. The top-ranked GLMM model from the primary analysis was then
compared via model selection to a new GLMM which utilised rat
incidence rather than Year as the key explanatory variable. The
purpose of this was to determine whether rat incidence could be
used to forecast Mōhua encounter rates.

Results

Primary analysis

The analysis revealed the initial top-ranked model to be ∼Year + Temp
with the zero-inflation component being ∼Wind (Table 1). This sug-
gests that temperature and wind speed are critical to interpreting the
encounter rates. The coefficients of the top-ranked model (Table 2)
demonstrate that more Mōhua were typically encountered at higher
temperatures, however, zero counts of Mōhua were more likely to be
recorded when conditions were slightly windier (Table 3. Year was a
universal variable amongst the top 15 models (Table 1), indicating that
there were underlying differences between the yearly counts. Pairwise
comparisons (Table 4) revealed that a substantial decline occurred be-
tween 2011 and 2012 which was maintained until 2018. These com-
parisons show that in 2018 and 2020 encounter rates had improved
to the extent they were statistical indistinguishable from those first
recorded in 2011.

Given that no single model had primacy, a model averaging ap-
proach was used to examine the trends in the model coefficients associ-
ated with Year. Model averaging demonstrated that encounter rates (re-
gardless of Temp or Wind) were beginning to return to the level recorded
in 2011 (Figure 2). Currently, model averaged predictions are not avail-
able for zero-inflated models created by the ‘glmmTMB’ package. As a
result, model predictions versus observed are graphed using the top-
ranked model (Figure 3).

8this allows the possibility that both negative and positive relationships exist (e.g.
the incidence of rats and encounter rates of Mōhua may increase together initially due
positive effects associated with forest productivity until an inflection point is reached at
which point rats start preying upon Mōhua resulting in a decline in encounter rates)
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Fixed effect model ZI K AIC ∆ AICc Model weight LL
∼Year + Temp ∼Wind 14 1596.33 0.00 0.17 -783.73
∼Year + Temp ∼1 13 1596.52 0.19 0.15 -784.88
∼Year + poly(Temp, 2) ∼Wind 15 1597.51 1.19 0.09 -783.26
∼Year + poly(Temp, 2) ∼1 14 1597.64 1.32 0.09 -784.39
∼Year + Temp + Wind ∼1 14 1597.76 1.43 0.08 -784.44
∼Year ∼Wind 13 1598.02 1.69 0.07 -785.63
∼Year + Temp ∼Temp 14 1598.25 1.93 0.06 -784.69
∼Year + Temp + Wind ∼Wind 15 1598.31 1.98 0.06 -783.66
∼Year ∼1 12 1598.38 2.05 0.06 -786.87
∼Year ∼Temp 13 1599.08 2.75 0.04 -786.16
∼Year + poly(Temp, 2) ∼Temp 15 1599.44 3.12 0.03 -784.22
∼Year + Temp + Wind ∼Temp 15 1599.58 3.26 0.03 -784.29
∼Year + Cloud + Temp + Wind ∼1 15 1599.77 3.44 0.03 -784.38
∼Year + Cloud + Temp + Wind ∼Wind 16 1600.30 3.97 0.02 -783.58
∼Year + Cloud + Temp + Wind ∼Temp 16 1601.61 5.29 0.01 -784.24
∼Temp ∼Wind 5 1653.78 57.45 0.00 -821.83
∼Cloud + Temp + Wind ∼Wind 7 1654.31 57.98 0.00 -820.04
∼1 ∼Wind 4 1655.06 58.74 0.00 -823.49
∼Temp + Wind ∼Wind 6 1655.61 59.28 0.00 -821.72
∼Temp ∼1 4 1655.63 59.31 0.00 -823.78
∼Cloud + Temp + Wind ∼1 6 1656.22 59.89 0.00 -822.02
∼Wind ∼Wind 5 1656.53 60.21 0.00 -823.21
∼1 ∼1 3 1657.11 60.78 0.00 -825.53
∼Temp ∼Temp 5 1657.17 60.84 0.00 -823.52
∼Temp + Wind ∼1 5 1657.66 61.33 0.00 -823.77
∼1 ∼Temp 4 1657.68 61.35 0.00 -824.80
∼Cloud + Temp + Wind ∼Temp 7 1657.89 61.57 0.00 -821.83
∼Wind ∼1 4 1659.11 62.78 0.00 -825.51
∼Observer ∼1 4 1659.14 62.81 0.00 -825.53
∼Temp + Wind ∼Temp 6 1659.21 62.89 0.00 -823.52
∼Wind ∼Temp 5 1659.68 63.35 0.00 -824.78

Table 1: Model selection table: prediction of Mōhua enounter rates by weather
conditions at time of monitoring, and year specific effects. Models ranked by
AICc (AIC with a small sample correction). Key: ZI = Zero-inflated formula com-
ponent, K = number of parameters, AICc = AIC with a small sample correction,
∆ AIC = difference in AIC value between the model and the top-ranked model,
Model weight = model likelihood, LL = log-likelihood (a measure of goodness of
fit).

Parameter Estimate Standard error z-value p-value
(Intercept) 0.473 0.428 1.105 0.269
Year 2012 -0.847 0.231 -3.666 < 0.001
Year 2013 -0.955 0.169 -5.666 < 0.001
Year 2014 -0.957 0.184 -5.196 < 0.001
Year 2015 -0.873 0.170 -5.133 < 0.001
Year 2016 -0.655 0.161 -4.059 < 0.001
Year 2017 -0.608 0.155 -3.937 < 0.001
Year 2018 -0.208 0.141 -1.468 0.142
Year 2019 -0.460 0.147 -3.132 0.002
Year 2020 -0.333 0.147 -2.259 0.024
Temp 0.089 0.046 1.934 0.053

Table 2: Fixed effect coefficients (log transformed) from the top-ranked zero-
inflated generalised linear mixed-effect model: ∼Year + Temp with the zero-
inflation component being ∼Wind.
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Parameter Estimate Standard error z-value p-value
(Intercept) -1.880 0.288 -6.518 0.000
Wind 0.484 0.290 1.665 0.096

Table 3: Zero-inflation coefficients (log transformed) from the top-ranked zero-
inflated generalised linear mixed-effect model: ∼Year + Temp with the zero-
inflation component being ∼Wind. A positive value for Wind indicates that a
zero count is more likely with increasing wind strength.

Contrast p-value
2011 - 2012 0.002
2011 - 2013 < 0.001
2011 - 2014 < 0.001
2011 - 2015 < 0.001
2011 - 2016 0.001
2011 - 2017 0.001
2011 - 2018 0.750
2011 - 2019 0.016
2011 - 2020 0.199

Table 4: Pairwise comparisons between encounter rates recorded in 2011 and
all other years.Key: Contrast = contrast between years, p-value = probability
that the observed difference (or more extreme difference) between the two years
could be generated by chance i.e. high p-values suggest that the years have
the same encounter rates while p-values approaching zero suggest that they
are different.
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Figure 2: The deviation between 2011 and every other year based on model-
averaged coefficients (from 15 models) showing the overall annual trend in the
absence of differing weather conditions. Error bars represent ± 95% confidence
intervals.

Supplementary analysis

Model selection revealed the second-order polynomial model described
the variability in Mōhua encounter rates between different years well
(Table 5). Mean incidence of rats was highly correlated with Mōhua
encounter rates (r2 = 0.936) and predicts the inflection point at which
point the incidence of rats becomes detrimental to the Mōhua encounter
rate (i.e. when the incidence exceeds 11%; Figure 5).

Given the the potential of a predictive relationship, another model
selection process was conducted to see whether a GLMM model that
had a polynomial relationship with rat incidence but no ‘Year’ effect
(hereafter referred to as the predictive rat model) could out perform
the previous top-ranked GLMM. Indeed, this predictive rat model suc-
ceeded in being the top-ranked model (Table 6) and was 3.4 × more
likely to be the better model based on evidence ratios. However, the
predictive rat model had a slightly poorer goodness of fit that the origi-
nal model (as demonstrated by having a lower value for log-likelihood;
Table 6), but when the two models are compared visually it is very clear
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Figure 3: A comparison of the observed counts and predicted for each of the 13
transects based on the top-ranked model: ∼Year + Temp with the zero-inflation
component being ∼Wind. Note: y-axis varies between transects.

that they make almost identical predictions (Figure 6).

Discussion

This analysis reveals a number of interesting patterns and phenomena.
The Makarora Mōhua population appears to be still in the process of
recovering from a decline that occurred between 2011–2012. This de-
cline coincides with the collapse of the Mōhua population in the Rees-
Dart Valley. The Rees-Dart population collapse was attributed to a rat
plague which followed a moderate beech masting event. Indeed a rat ir-
ruption preceded the 2012 decline in Makarora. The analysis contained
in this report suggests that subsequently there has been some kind of
recovery, and that in 2018 and 2020 encounter rates appeared to ap-
proach to those observed in 2011. Additionally, this outcome demon-
strates that the Makarora Mōhua data set was of a sufficient size for a
robust analysis.

This report’s primary analysis focused on understanding annual
trends associated with Mōhua encounter rates. However, the supple-
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Model K AICc ∆ AICc Model weight LL
∼poly (rats, 2) 4 -3.45 0.00 1.00 10.72
∼rats 3 11.83 15.28 0.00 -0.51
∼1 2 11.90 15.34 0.00 -2.95

Table 5: Model selection table: modelling model coefficients by mean incidence
of rats. Models ranked by AICc (AIC with a small sample correction). Key: K
= number of parameters, AICc = AIC with a small sample correction, ∆ AIC =
difference in AIC value between the model and the top-ranked model, Model
weight = model likelihood, LL = log-likelihood (a measure of goodness of fit).

Figure 5: A polynomial relationship between the mean incidence of rats (from
DOC tracking cards) and annual change in model coefficients (of the top model)
showed a very strong correlation r2 = 0.936. Note: the existence of an inflection
point when the mean incidence of rats approaches 0.11 (11%).
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Model K AICc ∆ AICc Model weight LL
∼poly (rats, 2) + Temp ∼Wind 7 1593.87 0.00 0.774 -789.82
∼Year + Temp ∼Wind 14 1596.33 2.46 0.226 -783.73

Table 6: Model selection table: a comparison of modelling Mōhua encounter
rates by model coefficients by mean incidence of rats versus the previous top-
ranked GLMM model based on the Year variable . Models ranked by AICc (AIC
with a small sample correction). Key: K = number of parameters, AICc = AIC
with a small sample correction, ∆ AIC = difference in AIC value between the
model and the top-ranked model, Model weight = model likelihood, LL = log-
likelihood (a measure of goodness of fit)

mentary analysis now shows that the incidence of rats via tracking
card data has a lot of predictive power. The major advantage of the
predictive rat model over the top-ranked Year model is that it allows
forward prediction of Mōhua encounter rates as opposed to simply of-
fering a retrospective description. The relationship between rat inci-
dence and Mōhua encounters appears to follow a polynomial function.
Such a function is unlikely to be entirely causative, rather it is most
likely approximating a situation in which increases in forest productiv-
ity initially benefit both rats and Mōhua, but above a certain thresh-
old the abundance of rats becomes highly detrimental to Mōhua (likely
through direct predation). The current results suggest such that the
critical threshold at which rats become problematic is when the mean
tracking card incidence exceeds 11%. Importantly, the relationship
described in this analysis is based on only 10 data points (correspond-
ing to the 10 years of data), meaning the inclusion of new data in the
coming years has the potential to radically reshape that pattern. Con-
sequently, the relationship described by the predictive rat model needs
to be approached with a degree of caution. However, previous stud-
ies have indicated that Mōhua populations suffer substantial declines
when peak tracking rates of rats exceed 30% (Elliott and Kemp, 2016).

Furthermore, it is specifically the incidence of rats rather than ro-
dents as a group which appears to be driving the declines in Makarora
Mōhua. This is demonstrated well in 2014–2015 (Figure 4) when a
moderate beech masting event resulted in a large mouse irruption, but
only a minor rat irruption, which had no measurable impact on the
subsequent Mōhua encounter rate (Figure 2). By contrast in 2019 a
very large rat irruption was halted by the aerial application of 1080,
however, despite the subsequent collapse of the rat population (Fig-
ure 4) the levels of rats had reached a threshold which impacted the
Mōhua encounter rate, which dropped from the year before (Figure 2).

Importantly, as encounter rates are an index form of monitoring
they do not necessarily emulate real changes in abundance – although
this is often assumed. By comparison, estimator methods (such as dis-
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Figure 6: A comparison of the observed counts and those predicted by the top-
ranked Year model and the predictive rat model for each of the 13 transects
based. Note: y-axis varies between transects.

tance sampling e.g. Buckland et al. 2015) can establish absolute abun-
dance. Estimator methods are not necessarily arduous and may be
able to be implemented with little additional field cost. Consequently,
it is recommended that a feasibility study on the use of such methods
is carried out.

It is important to note that the relationships and patterns uncovered
in this analysis are, at this stage, only attributable to the Makarora
valleys in which the observations were recorded. Until evidence from
other sites is collected and analysed the patterns should not be auto-
matically assumed to be applicable to other Mōhua populations located
elsewhere. However, the patterns revealed in this analysis are entirely
consistent with the broader ecological processes associated with New
Zealand beech forest masting events and rodent irruptions (e.g. Elliott
and Kemp 2016).

Given that the modelling used in the GLMM analysis suggests that
temperature positively affects the number of Mōhua seen when they are
there, and that even slight wind increases the probability of seeing no
Mōhua both variables must continue to be recorded, and incorporated
into modelling the encounter rates in the future.
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The current data has a minor problem with some transects being
monitored twice in the same day by the same observer (affecting ∼15%
of transects). This has potential implications for the independence of
the observations, as the observations taken on the same day by the
same observer will likely be biased. Not only may the observer be un-
consciously biased towards recent sighting locations, but the Mōhua
themselves are less likely to have dispersed to a new location within a
short time frame. Consequently, the occasional practice of resampling
the same transect in the same day by the same observer should be
avoided.

Conservation implications

As the beech mast-rat dynamic is a widespread landscape-scale pro-
cess the effective suppression of rodents will require an intervention at
a similar scale, such as that provided by the periodic aerial applica-
tion of 1080. For the same reason, localised ground-based efforts in
controlling rats are likely to be impractical and inconsequential.

While this analysis infers that landscape-scale rat control through
the use of 1080 since 2012 has likely averted a major Mōhua decline in
Makarora, it cannot rule out the possibility that localised predator trap-
ping by COLBRFBS may be contributing to that success. Indeed, hole
nesting birds such as Mōhua are known to be particularly susceptible
not only to rats but also stoats (Lawrence and Low, 2012). However, the
ability to infer the effectiveness of the predator trapping by COLBRFBS
is hampered by the absence of ‘control’ transects (i.e. monitoring tran-
sects where predator trapping is not carried out but otherwise subject
to the same landscape-scale processes and interventions as the other
transect sites).

Given that the Makarora Mōhua population is one of the few recov-
ering mainland populations the current management practices appear
to be working and consequentially should be continued. While the
Makarora Mōhua population appears to be returning to levels last seen
in 2011, this is likely to be a fraction of their historic norm, and should
not be mistaken as a benchmark for success.

Conclusions

• Current monitoring of Mōhua in Makarora is effective and mean-
ingful, and likely provides a reasonable representation of how the
population may be tracking.

• A robust analysis of the field data is possible via generalised linear
mixed-effect modelling that accommodates zero-inflation.
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• The Makarora Mōhua population appears to be still in the process
of recovering from a decline that occurred between 2011–2012.

• In 2018 and 2020 the Makarora Mōhua encounter rates appeared
to approach, if not return, to the rates observed in 2011.

• The encounter rates of the Makarora Mōhua population appear to
have a predictive relationship with rats.

• Modelling suggests that once the mean annual incidence of rats in
tracking cards exceeds 11% a decline in Mōhua can be expected.

• The aerial application of 1080 has been a major factor in reducing
rat abundance following beech masting events and therefore is
enabling the ongoing recovery of Mōhua in the Makarora area.

Recommendations

1. The monitoring of the Makarora Mōhua is of high value and
should be continued.

2. As the Makarora Mōhua population appears to be recovering, cur-
rent management interventions should be continued.

3. The occasional practice of resampling the same transect in the
same day by the same observer should be avoided, as this is a
potential source of bias.

4. Given that modelling revealed that temperature and wind affects
encounter rates these variables must continue to be recorded in
the field.

5. A feasibility study on the incorporation of an estimator approach
into the field methodology should be investigated, as this will allow
the production of abundance estimates which are more intuitive
and generally less variable than encounter rates.

6. The power of the predictive rat model should be continued to be
investigated in coming years owing to its potential for forecasting
and guiding decision making.

7. Given the complexity of the data analysis, automation of the anal-
ysis could provide a dramatic cost saving in future, and enable
near real-time reporting.

15



Acknowledgements

Additional data sets, clarification, and helpful advice were provided by
Graeme Elliott, Josh Kemp, Ross Sinclair, Joanne Tilson, and Ian ‘Mo’
Turnbull.

16



References

Barton, K. (2020). MuMIn: Multi-model inference. R package version
1.43.17.
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